dash_bioPileup Examples and Reference

see Pileup in action.

Pileup

An example of a default Pileup component without any extra properties.

This example has not been ported to R yet - showing the Python version instead.

Visit the old docs site for R at: https://community.plotly.com/c/dash/r/21


Select the genome to display below.

import dash_bio as dashbio
from dash import Dash, dcc, html, Input, Output, callback

app = Dash()

HOSTED_GENOME_DICT = [
    {'value': 'mm10', 'label': 'Mouse (GRCm38/mm10)'},
    {'value': 'hg19', 'label': 'Human (GRCh37/hg19)'}
]

HOSTED_GENOME_TRACKS = {
    'mm10': {
        'range': {
            'contig': 'chr17',
            'start': 7512284,
            'stop': 7512644
        },
        'reference': {
            'label': 'mm10',
            'url': 'https://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/mm10.2bit'
        },
        'tracks': [
            {
                'viz': 'scale',
                'label': 'Scale'
            },
            {
                'viz': 'location',
                'label': 'Location'
            }]
    },
    'hg19': {
        'range': {
            'contig': 'chr17',
            'start': 7512284,
            'stop': 7512644
        },
        'reference': {
            'label': 'hg19',
            'url': 'https://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit'
        },
        'tracks': [{
            'viz': 'scale',
            'label': 'Scale'
        },
            {
                'viz': 'location',
                'label': 'Location'
            },
            {
                'viz': 'genes',
                'label': 'genes',
                'source': 'bigBed',
                'sourceOptions': {'url': 'https://www.biodalliance.org/datasets/ensGene.bb'}
            }]
    }
}

app.layout = html.Div([
    dcc.Loading(id='default-pileup-container'),
    html.Hr(),
    html.P('Select the genome to display below.'),
    dcc.Dropdown(
        id='default-pileup-genome-select',
        options=HOSTED_GENOME_DICT,
        value='hg19'
    )
])


# Return the Pileup component with the selected genome.
@callback(
    Output('default-pileup-container', 'children'),
    Input('default-pileup-genome-select', 'value')
)
def return_pileup(genome):
    if HOSTED_GENOME_TRACKS.get(genome) is None:
        raise Exception("No tracks for genome %s" % genome)

    return (
        html.Div([
            dashbio.Pileup(
                id='pileup-default',
                range=HOSTED_GENOME_TRACKS[genome]['range'],
                reference=HOSTED_GENOME_TRACKS[genome]['reference'],
                tracks=HOSTED_GENOME_TRACKS[genome]['tracks']
            )
        ])
    )


if __name__ == '__main__':
    app.run(debug=True)

Customization

Genome

Select a genome by specifying a reference label (e.g. “hg19”, “mm10”), and a url pointing to a TwoBit data file. TwoBit files can be found in the UCSC Genome Browser, or can be remotely staged elsewhere.The Pileup component also requires a genomic range object that specifies the contig, start, and end position to be visualized.

This example has not been ported to R yet - showing the Python version instead.

Visit the old docs site for R at: https://community.plotly.com/c/dash/r/21

import dash_bio as dashbio

dashbio.Pileup(
    id='pileup-genome',
    range={
        'contig': 'chr8',
        'start': 65869361,
        'stop': 65869511
    },
    reference={
        'label': 'mm10',
        'url': 'https://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/mm10.2bit'
    }
)

Tracks

Add tracks with the tracks property of a Pileup component to view additional data types and sources. Tracks can display genomic coverage, features, variants, and reads.
Each track in a Pileup component requires a visualization type (viz) and a data source (source).

Pileup Data Sources

Each data source has its own set of required keys. Below, we enumerate the available data source types:
- bam : requires 'sourceOptions': {'url':, URL.bam 'indexUrl': URL.bam.bai}
- alignmentJson : requires 'sourceOptions': {GA4GH_JSON_STRING}
- variantJson : requires 'sourceOptions': {GA4GH_JSON_STRING}
- featureJson : requires 'sourceOptions': {GA4GH_JSON_STRING}
- idiogramJson : requires 'sourceOptions': {JSON_STRING}
- vcf : requires 'sourceOptions': {'url':, URL.vcf }
- bigBed : requires 'sourceOptions': {'url':, URL.bb }

Pileup Visualization Types

The Pileup component supports the following visualizations:
- coverage : requires alignmentJson, bam, or featureJson source
- genes : requires bigBed source
- features : requires featureJson or bigBed source
- variants : requires a vcf or variantJson data source
- genotypes : requires a vcf or variantJson data source
- pileup : requires a bam or alignmentJson data source
- idiogram : requires idiogramJson data source
- location : does not require a data source
- scale : does not require a data source

Multiple tracks can be added to a Pileup component by passing in a list of dicts, each of which corresponds to an individual track.

This example has not been ported to R yet - showing the Python version instead.

Visit the old docs site for R at: https://community.plotly.com/c/dash/r/21

import dash_bio as dashbio
import urllib.request as urlreq



source_data = urlreq.urlopen(
    'https://git.io/pileup-synth4.json'
).read().decode('utf-8')

dashbio.Pileup(
    id='tracks-pileup',
    range={
        'contig': 'chr1',
        'start': 4930382,
        'stop': 4946898
    },
    reference={
        'label': 'hg19',
        'url': 'https://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit'
    },
    tracks=[
        {
            'viz': 'coverage',
            'label': 'alignments',
            'source': 'alignmentJson',
            'sourceOptions': source_data
        },
        {
            'viz': 'pileup',
            'label': 'alignments',
            'source': 'alignmentJson',
            'sourceOptions': source_data
        }
    ]
)

Visualization Options

Depending on the visualization track, you can modify and set various visualization options. In this example, we set the option to view alignments as pairs by setting the value for viewAsPairs to True. Other vizOptions are as follows for each of the following track types:
- coverage and features : Set the track color by specifying a dict of RGB colors: { 'color': {'rgb': {'r': int, 'g': int, 'b': int, 'a': int}}}
- pileup : Included vizOptions are viewAsPairs: bool, colorByInsert: bool, colorByStrand: bool,hideAlignments: bool
- features : Collapse overlapping features by specifying {'collapse': True}

This example has not been ported to R yet - showing the Python version instead.

Visit the old docs site for R at: https://community.plotly.com/c/dash/r/21

import dash_bio as dashbio
import urllib.request as urlreq



source_data = urlreq.urlopen(
    'https://git.io/pileup-synth4.json'
).read().decode('utf-8')

dashbio.Pileup(
    id='viz-pileup',
    range={
        'contig': 'chr1',
        'start': 4930382,
        'stop': 4946898
    },
    reference={
        'label': 'hg19',
        'url': 'https://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit'
    },
    tracks=[
        {
            'viz': 'pileup',
            'vizOptions': {'viewAsPairs': True},
            'label': 'alignments',
            'source': 'alignmentJson',
            'sourceOptions': source_data
        }
    ]
)

Features

The features visualization allows you to view any features that have a genomic location (a contig, start, and stop). You can specify vizOptions for features, including the track color whether to collapse overlapping features.

This example has not been ported to R yet - showing the Python version instead.

Visit the old docs site for R at: https://community.plotly.com/c/dash/r/21

import dash_bio as dashbio
import urllib.request as urlreq


source_data = urlreq.urlopen(
    'https://git.io/pileup-ga4gh.json'
).read().decode('utf-8')

dashbio.Pileup(
    id='features-pileup',
    range={
        'contig': 'chr1',
        'start': 120000,
        'stop': 125000
    },
    reference={
        'label': 'hg19',
        'url': 'https://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit'
    },
    tracks=[
        {
            'viz': 'features',
            'vizOptions': {'color': {'rgb': {'r': 251, 'g': 62, 'b': 22, 'a': 1}},
                           'collapse': False},
            'label': 'features',
            'source': 'featureJson',
            'sourceOptions': source_data
        }
    ]
)

Pileup Properties

Our recommended IDE for writing Dash apps is Dash Enterprise’s
Data Science Workspaces,
which has typeahead support for Dash Component Properties.
Find out if your company is using
Dash Enterprise
.

id (character; optional):
The ID of this component, used to identify dash components in
callbacks. The ID needs to be unique across all of the components in
an app.

style (named list; optional):
Generic style overrides on the plot div.

className (character; optional):
className of the component div.

range (named list; optional):
Object defining genomic location. Of the format: {contig: ‘chr17’,
start: 7512384, stop: 7512544}.

range is a named list with keys:

  • contig (character; optional):
    Name of contig to display. (ie. chr17).

  • start (numeric; optional):
    Start location to display.

  • stop (numeric; optional):
    Stop location to display.

reference (named list; optional):
Object defining genomic reference.

reference is a named list with keys:

tracks (list where each item is a named list; optional):
Array of configuration objects defining tracks initially displayed
when app launches. See
https://github.com/hammerlab/pileup.js#usage.

tracks is a list where each item is a named list with keys:

  • label (character; optional):
    Label to display by track.

  • source (a value equal to: ‘bam’, ‘alignmentJson’, ‘variantJson’, ‘featureJson’, ‘idiogramJson’, ‘cytoBand’, ‘vcf’, ‘twoBit’, ‘bigBed’, ‘GAReadAlignment’, ‘GAVariant’, ‘GAFeature’ or ‘GAGene’; optional):
    Data source to visualize. Must be one of (bam, vcf,
    alignmentJson, variantJson, featureJson, idiogramJson, cytoBand,
    vcf, twoBit, bigBed, GAReadAlignment, GAVariant, GAFeature,
    GAGene). For more info on data source types supported
    by pileup.js see
    https://github.com/hammerlab/pileup.js/blob/master/src/main/pileup.js.

  • sourceOptions (optional):
    Options that define data source. Options depend on the
    source selected.

  • viz (a value equal to: ‘coverage’, ‘genome’, ‘genes’, ‘features’, ‘idiogram’, ‘location’, ‘scale’, ‘variants’, ‘genotypes’ or ‘pileup’; optional):
    Name of visualization. Must be one of (coverage,
    genome, genes, features, idiogram, location, scale,
    variants, genotypes, or pileup). For more info on visualization
    types supported by pileup.js see
    https://github.com/akmorrow13/pileup.js/blob/master/src/main/pileup.js.

  • vizOptions (optional):
    Options that define viz details. Options depend on the
    viz type selected.

loading_state (named list; optional):
Object that holds the loading state object coming from dash-renderer.

loading_state is a named list with keys:

  • component_name (character; optional):
    Holds the name of the component that is loading.

  • is_loading (logical; optional):
    Determines if the component is loading or not.

  • prop_name (character; optional):
    Holds which property is loading.

Example Data