In addition to pagination, DataTable
also has virtualization capabilities
for viewing large datasets. Virtualization saves browser resources while
still permitting the user to scroll through the entire dataset. It achieves this
by only a rendering a subset of the data at any instant.
The virtualization backend makes a few assumptions about the style of
your DataTable
which must be adhered to in order to ensure that the
table scrolls smoothly.
The example below prevents runtime style changes by fixing the column
widths and setting the white-space CSS property in the cells to normal.
from dash import Dash, dash_table
import pandas as pd
app = Dash(__name__)
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Emissions%20Data.csv').reset_index()
df['Emission'] = df['Emission'].map(lambda x: '{0:.2f}'.format(x))
app.layout = dash_table.DataTable(
id='table-virtualization',
data=df.to_dict('records'),
columns=[
{'name': i, 'id': i} for i in df.columns
],
fixed_rows={ 'headers': True, 'data': 0 },
style_cell={
'whiteSpace': 'normal'
},
style_data_conditional=[
{'if': {'column_id': 'index'},
'width': '50px'},
{'if': {'column_id': 'Year'},
'width': '50px'},
{'if': {'column_id': 'Country'},
'width': '100px'},
{'if': {'column_id': 'Continent'},
'width': '70px'},
{'if': {'column_id': 'Emission'},
'width': '75px'},
],
virtualization=True,
page_action='none'
)
if __name__ == '__main__':
app.run(debug=True)